
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation

Abstract Carbon capture and storage (CCS) technology is an important option in the portfolio of emission mitigation solutions in scenarios that lead to deep reductions in greenhouse gas (GHG) emissions. We focus on CCS application in hard-to-abate sectors (cement industry, iron and steel, chemicals) and introduce industrial CCS options into the MIT Economic Projection and Policy Analysis (EPPA) model, a global multi-region multi-sector energy-economic model that provides a basis for the analysis of long-term energy deployment. We use the EPPA model to explore the potential for industrial CCS in different parts of the world, under the assumptions that CCS is the only mitigation option for deep GHG emission reductions in industry and that negative emission options are not available for other sectors of the economy. We evaluate CCS deployment in a scenario that limits the increase in average global surface temperature to 2 °C above preindustrial levels. When industrial CCS is not available, global costs of reaching the target are higher by 12% in 2075 and 71% in 2100 relative to the cost of achieving the policy with CCS. Overall, industrial CCS enables continued growth in the use of energy-intensive goods along with large reductions in global and sectoral emissions. We find that in scenarios with stringent climate policy, CCS in the industry sector is a key mitigation option, and our approach provides a path to projecting the deployment of industrial CCS across industries and regions.
- Massachusetts Institute of Technology United States
- ExxonMobil United States
- ExxonMobil (United States) United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).155 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
