Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
License: CC BY
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation

Authors: Howard J. Herzog; Haroon S. Kheshgi; J. Jeffrey Morris; Sergey Paltsev;

Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation

Abstract

Abstract Carbon capture and storage (CCS) technology is an important option in the portfolio of emission mitigation solutions in scenarios that lead to deep reductions in greenhouse gas (GHG) emissions. We focus on CCS application in hard-to-abate sectors (cement industry, iron and steel, chemicals) and introduce industrial CCS options into the MIT Economic Projection and Policy Analysis (EPPA) model, a global multi-region multi-sector energy-economic model that provides a basis for the analysis of long-term energy deployment. We use the EPPA model to explore the potential for industrial CCS in different parts of the world, under the assumptions that CCS is the only mitigation option for deep GHG emission reductions in industry and that negative emission options are not available for other sectors of the economy. We evaluate CCS deployment in a scenario that limits the increase in average global surface temperature to 2 °C above preindustrial levels. When industrial CCS is not available, global costs of reaching the target are higher by 12% in 2075 and 71% in 2100 relative to the cost of achieving the policy with CCS. Overall, industrial CCS enables continued growth in the use of energy-intensive goods along with large reductions in global and sectoral emissions. We find that in scenarios with stringent climate policy, CCS in the industry sector is a key mitigation option, and our approach provides a path to projecting the deployment of industrial CCS across industries and regions.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    155
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
155
Top 1%
Top 10%
Top 0.1%
hybrid