Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical study of gas production from fine-grained hydrate reservoirs using a multilateral horizontal well system

Authors: Gaowei Hu; Peixiao Mao; Yanlong Li; Yizhao Wan; Nengyou Wu; Jiaxin Sun; Fulong Ning;

Numerical study of gas production from fine-grained hydrate reservoirs using a multilateral horizontal well system

Abstract

Abstract Natural gas hydrate is prevalent in ultralow-permeability fine-grained sediments with substantial reserves. However, effective and safe gas production from fine-grained hydrate reservoirs remains a global challenge. Here, a multilateral horizontal well system is innovatively employed to improve production efficiency in fine-grained hydrate reservoirs. A three-dimensional (3D) numerical model of a real gas hydrate reservoir is constructed, and the influences of well configuration, deployment location, depressurization pressure, and reservoir properties on production are systemically and quantitatively evaluated. The spatial distributions of the physical properties of the 3D reservoirs during gas production are clearly revealed. The results indicate that the production efficiency of multilateral horizontal wells improves with increasing branch number and length, particularly when the ratio of branch length to reservoir width exceeds 0.15. Branch interference and perforation length positively affect production enhancement when multilateral horizontal wells are deployed in hydrate reservoirs with specific ultralow permeabilities; these discoveries are revealed for the first time. Multilateral horizontal wells with helically and vertically distributed equal-length branches yield high production efficiencies, and their optimal locations are in the lower sections of the reservoirs, particularly within high-isotropic-permeability reservoirs. Moreover, uniformly low depressurization pressure in helically distributed branches facilitates gas extraction; gas recovery efficiency increases by 8% when production pressure decreases by 1 MPa. This study suggests that the use of a helical multilateral well system is a promising strategy for achieving commercial gas production from fine-grained hydrate reservoirs.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 1%
Top 10%
Top 1%