
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Unlocking electrochemical model-based online power prediction for lithium-ion batteries via Gaussian process regression

Abstract The knowledge of the dynamic available charging and discharging power of the battery is a piece of essential information for the safety and longevity of the battery energy storage systems. An accurate real-time prediction of these quantities is very challenging due to the high nonlinearities of battery dynamics. In this paper, an electrochemical model-based online state-of-power prediction algorithm under different time horizons is developed for a safer and more reliable operation of lithium-ion batteries. The safety constraints, which define the safety operation area for the power prediction, are designed based on not only the terminal voltage but also battery internal electrochemical states, i.e., the electrode surface concentration, the electrolyte concentration, and the side reaction overpotential. The algorithm is validated by simulations and experiments under a dynamic load profile, and the dominating constraints in charging and discharging as well as the influence of predictive time horizons on the available battery power are analyzed, providing important information for further researches. Furthermore, the computational speed of the proposed iterative algorithm is improved with the integration of Gaussian process regression by up to 50%. A comparative study with a state-of-the-art equivalent circuit model-based approach highlights the significant benefits of the proposed electrochemical model-based algorithm in operation safety enhancement and battery performance improvement.
- RWTH Aachen University Germany
- Forschungszentrum Jülich Germany
- Helmholtz Association of German Research Centres Germany
- Helmholtz-Institute Münster Germany
- Forschungszentrum Jülich GmbH Germany
info:eu-repo/classification/ddc/620
info:eu-repo/classification/ddc/620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).51 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
