Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Caputo derivative applied to very short time photovoltaic power forecasting

Authors: Lauria D.; Mottola F.; Proto D.;

Caputo derivative applied to very short time photovoltaic power forecasting

Abstract

Intra-hour photovoltaic power forecasting provides essential information for real time optimal control of microgrids. At this purpose, a critical issue is the selection of the forecasting method. The choice of a forecasting method depends on many factors such as the availability of historical data, the time horizon, the lag period, and the time available for the forecast. Persistence based methods are particularly tailored for real time forecasting which require fast information and are typically a good trade-off choice when dealing with real time operation of microgrids. Their accuracy, however, could be not satisfactory in some cases such as when it appears critical to consider the trend of the power output in the last few minutes rather than only the last measured value. Derivatives help reach this goal, but fractional derivatives seem to be a more accurate choice in order to take into account the history of the variable to be forecasted as they are a promising tool for describing memory phenomena. In this paper, a novel intra-hour forecasting method is proposed based on the Caputo derivative. Numerical applications are carried out to show the efficacy of the proposed approach. Also, the accuracy of the proposed approach is tested through comparison with three models namely, persistence, derivative-persistence and auto regressive moving average models. The strength of the proposed forecasting tool is strictly related to its low computational burden without compromising accuracy. This makes of it an interesting means for real time grid operation strategies and can be of interest for the grid operators especially in vision of the changes distribution grids are witnessing with the transition to the smart grid paradigm.

Country
Italy
Related Organizations
Keywords

Smart grid, Real time forecasting, Caputo derivative, Persistence model, Photovoltaic power forecasting, Caputo derivative; Persistence model; Photovoltaic power forecasting; Real time forecasting; Smart grid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%