
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Unveiling the role of carbonate in nickel-based plasmonic core@shell hybrid nanostructure for photocatalytic water splitting

Abstract Though carbonates are known for several decades, their role in sun-light driven photocatalysis is still hidden. Herein, carbonate boosted solar water splitting in nickel-based plasmonic hybrid nanostructures is disclosed for the first time via in-situ experiments and density-functional theory (DFT)-based calculations. Ni@NiO/NiCO₃ core@shell (shell consisting of crystalline NiO and amorphous NiCO₃) nanostructure with varying size and compositions are studied for hydrogen production. The visible light absorption at ∼470 nm excludes the possibility of NiO as an active photocatalyst, emphasizing plasmon driven H₂ evolution. Under white light irradiation, higher hydrogen yield of ∼80 µmol/g/h for vacuum annealed sample over pristine (∼50 µmol/g/h) complements the spectroscopic data and DFT results, uncovering amorphous NiCO₃ as an active site for H₂ absorption due to its unique electronic structure. This conclusion also supports the time-resolved photoluminescence results, indicating that the plasmonic electrons originating from Ni are transferred to NiCO₃ via NiO. The H₂ evolution rate can further be enhanced and tuned by the incorporation of NiO between Ni and NiCO₃.
Ni@NiO/NiCO3, In-situ XPS, DFT, Hydrogen evolution reaction, Surface Plasmons Resonance
Ni@NiO/NiCO3, In-situ XPS, DFT, Hydrogen evolution reaction, Surface Plasmons Resonance
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
