Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://dx.doi.org/10.1016/j.ap...
Article
License: Elsevier TDM
Data sources: Sygma
Applied Energy
Article . 2022 . Peer-reviewed
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unveiling the role of carbonate in nickel-based plasmonic core@shell hybrid nanostructure for photocatalytic water splitting

Authors: Talebi, Parisa; Kistanov, Andrey A.; Rani, Ekta; Singh, Harishchandra; Pankratov, Vladimir; Pankratova, Viktorija; King, Graham; +2 Authors

Unveiling the role of carbonate in nickel-based plasmonic core@shell hybrid nanostructure for photocatalytic water splitting

Abstract

Abstract Though carbonates are known for several decades, their role in sun-light driven photocatalysis is still hidden. Herein, carbonate boosted solar water splitting in nickel-based plasmonic hybrid nanostructures is disclosed for the first time via in-situ experiments and density-functional theory (DFT)-based calculations. Ni@NiO/NiCO₃ core@shell (shell consisting of crystalline NiO and amorphous NiCO₃) nanostructure with varying size and compositions are studied for hydrogen production. The visible light absorption at ∼470 nm excludes the possibility of NiO as an active photocatalyst, emphasizing plasmon driven H₂ evolution. Under white light irradiation, higher hydrogen yield of ∼80 µmol/g/h for vacuum annealed sample over pristine (∼50 µmol/g/h) complements the spectroscopic data and DFT results, uncovering amorphous NiCO₃ as an active site for H₂ absorption due to its unique electronic structure. This conclusion also supports the time-resolved photoluminescence results, indicating that the plasmonic electrons originating from Ni are transferred to NiCO₃ via NiO. The H₂ evolution rate can further be enhanced and tuned by the incorporation of NiO between Ni and NiCO₃.

Countries
Finland, Finland
Keywords

Ni@NiO/NiCO3, In-situ XPS, DFT, Hydrogen evolution reaction, Surface Plasmons Resonance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
Green
hybrid