
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Quantifying the photovoltaic potential of highways in China

Installing photovoltaic (PV) modules on highways is considered a promising way to support carbon neutrality in China. However, collecting the area of the highway, and precisely assessing the shadow area of the highway under complex terrain remain challenges. That severely hinders the assessment of highway PV potential. To address these challenges, a spatiotemporal model is developed in this study to estimate the annual solar PV potential on highways over the whole Chinese territory. First, the areas of different highway segments are calculated based on highway network and highway toll stations. Second, hourly shadow area on highways created by nearby terrain is estimated based on a digital elevation model (DEM). When calculating the highway PV potential, the solar irradiation received in these shadow areas is regarded as zero. Finally, the PV potential of all lanes and emergency lanes was estimated at the prefecture-level city scale using surface radiation data and radiation assessment models. Based on the highway data with a total mileage of 143,684 km at the end of 2020, the results show that the annual PV potential is 3,932 TW and that the corresponding installed capacity is 700.85 GW, which can generate clean electricity at a rate of up to 629.06 TWh. The annual PV potential of highways in the southeast is greater than that in the northwest owing to the higher highway density in the southeast. This study provides a reference basis for highway PV construction planning and suitably assessment in each region of China for PV highway development. © 2022 Elsevier Ltd
- Hong Kong Polytechnic University China (People's Republic of)
- Hong Kong University of Science and Technology (香港科技大學) China (People's Republic of)
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application China (People's Republic of)
- Mälardalen University Sweden
- Hong Kong University of Science and Technology (香港科技大學) China (People's Republic of)
380, Intelligent transportation, Photovoltaic highway, Hillshade, Carbon neutrality
380, Intelligent transportation, Photovoltaic highway, Hillshade, Carbon neutrality
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
