Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Robust multi-objective optimization for islanded data center microgrid operations

Authors: Yicheng Lian; Yuanzheng Li; Yong Zhao; Chaofan Yu; Tianyang Zhao; Lei Wu;

Robust multi-objective optimization for islanded data center microgrid operations

Abstract

Electricity cost has become a critical concern of data center operations with the rapid increasing of information processing demand. Data center microgrid (DCMG) is a promising way to reduce electric energy consumption from traditional fossil fuel generators and the billing cost, by effectively utilizing local renewable energy, e.g., wind power. However, uncertainties of wind power generation and real-time workload of data center would have significant impacts on the operational efficiency of DCMG, especially when it is in the island mode. For this reason, a novel affinely adjustable policy based robust multi-objective optimization model under flexible uncertainty set is proposed in this paper, which simultaneously optimizes wind power curtailment, the operation cost, and the over-plus level of computation resource, while considering uncertainties of both the wind power and real-time workload. Through numerical simulation studies, the validity of robust multi-objective optimization model for the island operation of DCMG is verified. Besides, the effectiveness of the proposed methods, i.e., the novel affinely adjustable policy and the flexible uncertainty set, in handling uncertainties are evaluated. Compared to the conventional robust multi-objective optimization model, the proposed approach reduces the operating costs of about 10% in average while maintaining similar reliability in numerical simulations. Moreover, the complex quantitative relationship among these multiple objectives is further investigated. Simulation results indicate the minimization of wind power curtailment and over-plus level of computation resource increases about 25% of the operation cost. These quantitative relationships can well support the decision making of DCMG operation management.

Related Organizations
Keywords

Robust multi-objective optimization, Data center microgrid, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, /dk/atira/pure/subjectarea/asjc/2300/2308; name=Management, Monitoring, Policy and Law, Affinely adjustable policy, Flexible uncertainty set, /dk/atira/pure/subjectarea/asjc/2200/2215; name=Building and Construction, /dk/atira/pure/subjectarea/asjc/2200/2210; name=Mechanical Engineering, /dk/atira/pure/subjectarea/asjc/2100/2100; name=General Energy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 1%
Green