Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal hydraulic energy harvesting strategy for PaT installation in Water Distribution Networks

Authors: Stefanizzi, M.; Filannino, D.; Capurso, T.; Camporeale, S. M.; Torresi, M.;

Optimal hydraulic energy harvesting strategy for PaT installation in Water Distribution Networks

Abstract

Water Distribution Networks (WDNs) represent a noteworthy field for possible implementation of Small Hydropower (SHP), by replacing Pressure Reduction Valves (PRV) with turbomachines, in particular Pump as Turbines (PaTs), to control and regulate the pressure, while harvesting energy otherwise wasted. Different models were developed to predict the performance and select the positioning of the PaTs for the maximum energy recovery but most of them neglect practical aspect such as: power grid limitations and optimal harvesting strategy. In this framework, we intend to propose a new method to select a PaT, defining its optimal working point, by introducing an energy exploitation coefficient. The proposed methodology is based on the experimental results of a real PaT tested in the high capacity hydraulic laboratory at Polytechnic University of Bari. Firstly, the selected commercial centrifugal pump was tested in both pump and turbine modes. Then, three different approaches, for the Best Efficiency Point (BEP) selection, are described and compared in terms of energy exploitation and capacity factor for a WDN. The first consists of selecting the BEP at the average flow rate, the second one considers the probability distribution of the flow rate and the corresponding available hydraulic energy, whereas the latter is based on the highest energy harvesting. By applying energy production, economic and environmental analyses, the new proposed methodology, based on the third approach, shows a remarkable advantage in terms of exploited energy. Indeed a remarkable 60% energy recovery is achieved with 334 ton CO2/year avoided. Furthermore, the impact of the electrical motor on the maximum power generation (cut-off) is considered. Eventually, useful insights for the future PaT selection and installation are discussed.

Country
Italy
Keywords

PaT, Small hydropower, Water distribution network, Energy transitio, Renewable energy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Green
hybrid
Related to Research communities
Energy Research