Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal design of aggregated energy systems with (N-1) reliability: MILP models and decomposition algorithms

Authors: Castelli A. F.; Pilotti L.; Monchieri A.; Martelli E.;

Optimal design of aggregated energy systems with (N-1) reliability: MILP models and decomposition algorithms

Abstract

This work investigates the design optimization of aggregated energy systems (multi-energy systems, microgrids, energy districts, etc.) with (N-1)-reliability requirements. The problem is formulated as a two-stage stochastic Mixed Integer Linear Program which optimizes design (first stage variables) and operation variables (second stage variables) simultaneously considering a set of typical and extreme days. The analysis proposes and compares different approaches to include the (N-1) reliability requirement in the optimization problem. Moreover, the paper proposes two effective decomposition algorithms to solve the large-scale Mixed Integer Linear Program suitable for design problems with and without (N-1) reliability requirements. Depending on the instance, such decomposition algorithms allow reducing the computational time by one or more orders of magnitude (from days to a few hours, in the worst cases tested in this work). The proposed methodology is tested to design the aggregated energy system for a real case study considering both a grid-connected and off-grid installation. Results indicate that the actual reliability of the design solutions depends by the profiles of energy demand and renewable production considered in the failure scenarios included in the design problem. Including N-1 reliability requirements causes an increase in the total annual cost in the range 15–20%, due to the increase in capital costs.

Country
Italy
Related Organizations
Keywords

Multi-energy systems, Stochastic program, Microgrids, Reliability, MILP

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
hybrid
Related to Research communities
Energy Research