Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Article . 2024
Data sources: VBN
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bayesian averaging-enabled transfer learning method for probabilistic wind power forecasting of newly built wind farms

Authors: Hu, Jiaxiang; Hu, Weihao; Cao, Di; Huang, Yuehui; Chen, Jianjun; Li, Yahe; Chen, Zhe; +1 Authors

Bayesian averaging-enabled transfer learning method for probabilistic wind power forecasting of newly built wind farms

Abstract

This paper proposes a technique for the probabilistic wind power forecasting (WPF) of a newly built wind farm (NWF) using a limited amount of historical data. First, the state-of-the-art Transformer network is employed to capture the power generation pattern of different wind farms (WFs) based on abundant historical training samples. Then, the Bayesian averaging regression method is applied to transfer the learned power generation pattern to the NWF by assigning proper weights to the WPF results of different WFs. This enables the proposed method to yield accurate NWF power predictions utilizing a limited amount of historical data. The Bayesian characteristics further enable the quantification of multiple uncertainties in forecasting results that may be essential for the NWF operator when the input is uncertain. Comprehensive tests were also performed by employing other deterministic and probabilistic WPF methods using field data. By comparing the results, the proposed method is demonstrated to produce accurate forecasting results with sparse historical data. Moreover, the uncertainties of outcomes are quantified, and acceptable performance is achieved.

Country
Denmark
Related Organizations
Keywords

Transformer network, Newly built wind farm, Bayesian averaging regression, Probabilistic wind power forecasting

Powered by OpenAIRE graph
Found an issue? Give us feedback