Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The potential role of biomethane for the decarbonization of transport: An analysis of 2030 scenarios in Italy

Authors: Noussan M.; Negro V.; Prussi M.; Chiaramonti D.;

The potential role of biomethane for the decarbonization of transport: An analysis of 2030 scenarios in Italy

Abstract

This paper aims at evaluating the best allocation of potential biomethane generation for the decarbonization of the transport system, presenting a case study in Italy. The country has some peculiar features, such as several operating biogas plants, additional potential feedstock for biogas/biomethane generation, a well-developed natural gas network and established relevant natural gas uses in different final sectors, including transport. Based on current estimates for sustainable biomethane potential by 2030, ranging from 2.3 to 7.6 billion cubic meters depending on the scenario, the analysis compares technologies for the generation, distribution and final use of biomethane. The results of the analysis confirm the potential interesting contribution of biomethane in decarbonizing the Italian transport system: a billion cubic meters of biomethane can lead to 2.33–4.37 MtCO2e savings, depending on the feedstock mix and the application. On a national basis, annual climate emission savings in 2030 range from 10.0 to 26.7 MtCO2e, depending on the scenario. Additional 3.1–8.1 MtCO2e of emissions can be avoided if the CO2 captured during the biomethane upgrading can be stored or reused. The proposed methodology could be used to extend the analysis to other countries, and to the European context.

Country
Italy
Related Organizations
Keywords

Biomethane; Bioenergy; Decarbonization; Transport

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Average
Top 10%
Green
hybrid
Related to Research communities
Energy Research