Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-ENS-LYON
Article . 2024
Data sources: HAL-ENS-LYON
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-Lyon 3
Article . 2024
Data sources: HAL-Lyon 3
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SHAPE: A temporal optimization model for residential buildings retrofit to discuss policy objectives

Authors: Martin, Rit; Arthur, Thomas; Villot, Jonathan; Mathieu, Thorel; Enora, Garreau; Girard, Robin;

SHAPE: A temporal optimization model for residential buildings retrofit to discuss policy objectives

Abstract

In a context of massive renovation of residential buildings, stakeholders need decision-support models based on knowledge of the current building stock and accurate simulation of energy demand. This paper presents a new strategy for reducing energy consumption in the building sector, a key factor in combating climate change and promoting sustainability. We introduce an approach to (1) plan retrofits at community level, with a building resolution, for different years of an optimization period and (2) assist local authorities in selecting effective measures to improve the environmental performance of their building stock. The focus is on creating trajectory retrofit plans creation for a building stock with three main retrofit options: improving insulation, heating systems and hot water systems. We adapt a complex but linear approach, a type of problem-solving structure known as a multidimensional multiple-choice knapsack problem, which manages to handle a large number of possible retrofit combinations without becoming unwieldy. The planning process is streamlined as a single-objective optimization task that aims to reduce the total cost of retrofits by reducing their net present value.The efficiency of the model is demonstrated by simulating retrofit scenarios for 4,000 buildings in a French region to prove its ability to tackle large problems. France’s targets for decarbonizing the residential sector are taken into account, with a target of reducing GHG emissions by a factor of 10 and a building stock consuming 80kWhEP/m2/year. The results show that these plans are feasible, but that they will require 50% of all buildings to undergo major renovation with abatement costs of around €200/tGES. Our practical application to an actual community demonstrates the model’s ability to identify appropriate retrofitting measures and compile building data.

Country
France
Keywords

[SDE] Environmental Sciences, 330, Linear model, [SDE]Environmental Sciences, Territorial scale, Cost optimization, 333, Energy savings Mixed Integer Linear Programming, Knapsack problem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Top 10%
Related to Research communities
Energy Research