
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Multi-objective nonlinear observer design for multi-fault detection of lithium-ion battery in electric vehicles

handle: 1959.3/477871
Accurate and rapid fault detection is essential for the safe operation of lithium-ion batteries in electric vehicles. However, conventional fault detection methods dependent on constant thresholds may have false alarms or missing alarms due to the inevitable disturbances resulted from the battery system modeling errors and measurement noises. In this paper, we design a multi-objective nonlinear fault detection observer for lithium-ion batteries, which is robust against disturbances but sensitive to battery multi-fault. We then perform formal stability and L∞/H_ performance analysis for the resultant estimation error system. Furthermore, tractable design procedures for the observer gain parameter and an adaptive threshold are derived. Then, via adaptive thresholding, a delicate three-step multi-fault detection scheme is developed to detect the occurrence of battery various faults, including short-circuit faults, current and voltage sensor faults. Finally, the efficacy of the proposed scheme is validated under several experimental case studies involving a variety of faults with their different levels of severity and erroneous SOC initialization.
- Swinburne University of Technology Australia
- Swinburne University of Technology Australia
006
006
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
