Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Repositorio instituc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An ADMM-enabled robust optimization framework for self-healing scheduling of smart grids integrated with smart prosumers

Authors: Zhang, Pan; Mansouri, Seyed Amir; Jordehi, Ahmad Rezaee; Tostado-Véliz, Marcos; Alharthi, Yahya Z.; Safaraliev, Murodbek;

An ADMM-enabled robust optimization framework for self-healing scheduling of smart grids integrated with smart prosumers

Abstract

Enhancing the reliability of energy networks and minimizing downtime is crucial, making self-healing smart grids indispensable for ensuring a continuous power supply and fortifying resilience. As smart grids increasingly incorporate decentralized prosumers, innovative coordination strategies are essential to fully exploit their potential and improve system self-healing capabilities. To address this need, this paper presents a novel bi-level strategy for managing the self-healing process within a smart grid influenced by Hydrogen Refueling Stations (HRSs), Electric Vehicle Charging Stations (EVCSs), and energy hubs. This approach taps into the combined potential of these prosumers to boost system self-healing speed and reliability. In the initial stage, the Smart Grid Operator (SGO) conducts self-healing planning during emergencies, communicating required nodal capacities to prevent forced load shedding and outlining incentives for smart prosumers. Subsequently, prosumers schedule their activities and contribute flexible capacities to the SGO. Bridging the first and second stages, an adaptive Alternating Direction Method of Multipliers (ADMM) algorithm ensures convergence between the SGO and prosumer schedules within a decentralized framework. This strategy underwent implementation on a 118-node distribution system using GAMS. Results demonstrate that the proposed concept reduces Forced Load Shedding (FLS) by 32.04% and self-healing costs by 17.48% through effective utilization of smart prosumers' flexible capacities. Furthermore, outcomes indicate that the SGO reduces FLS by 6.69% by deploying Mobile Electrical Energy Storages (MEESs) and Mobile Fuel Cell Trucks (MFCTs) to critical nodes. This research has benefited from the funding of the program Strategic projects oriented to the ecological transition and digital transition with NextGenerationEU/PRTR funds of the Spanish Ministry of Science and Innovation/State Research Agency (project ‘‘Local markets for energy communities: designing efficient markets and assessing the integration from the electricity system perspective (OptiREC)’’, with reference number TED2021-131365B-C43. The research has also supported by the Natural Science Foundation of Universities of Anhui Province (KJ2020A0009)

Related Organizations
Keywords

Alternating direction method of multipliers, Energy hubs, Hydrogen energy, Self-healing, Smart grids, Vehicle-to-grid services, 530, 004

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Average
Top 10%
Top 10%
Green
Related to Research communities
Energy Research