
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Non-intrusive thermal load disaggregation and forecasting for effective HVAC systems

Kaneko N., Okazawa K., Zhao D., et al. Non-intrusive thermal load disaggregation and forecasting for effective HVAC systems. Applied Energy 367, 123379 (2024); https://doi.org/10.1016/j.apenergy.2024.123379. ; Non-Intrusive Thermal Load Monitoring (NITLM) tracks the sub-loads generated by each heat source (e.g. occupants, equipment, solar radiation etc.) from the total thermal load and indirectly provides a room's thermal properties without additional sensors. Since sub-loads can improve the efficiency of HVAC systems, NITLM is a very attractive technology for building energy management. NITLM has traditionally focused on analyzing past and present sub-loads. However, by forecasting future sub-loads, HVAC systems will be able to schedule operations that take into account the thermal properties of future rooms. This work focuses on a new NITLM framework that forecasts future sub-loads based on the current and past total thermal loads. In experiments, we selected occupant loads that are closely connected to HVAC systems and performed sub-load forecasting using two types of approaches. One is a two-step approach that separately performs them in turn. This approach use separately trained model for disaggregation and forecasting, this allow us to fine-tuning the hyper-parameter for dedicate model. Moreover, the two-step approach can take into account the different properties and difficulties of each inference, resulting in smaller errors in sub-load forecasting. The other is an integrated approach. This approach combines load disaggregation and forecasting into a single estimation process, eliminating error propagation and reducing overall error in sub-load forecasting. Moreover, this approach utilizes the Adaptive Moment Estimation (Adam) algorithm for effective parameter optimization, enabling complex training and improving the accuracy of sub-load forecasting. We conducted evaluations of thermal load disaggregation and forecasting across a range of realistic building scenarios. The findings indicate that the ...
- Osaka University Japan
- Osaka University Japan
Thermal load disaggregation, 330, Time series forecasting, Neural network, Non-intrusive thermal load monitoring, 620
Thermal load disaggregation, 330, Time series forecasting, Neural network, Non-intrusive thermal load monitoring, 620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
