
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Predictability of electric vehicle charging: Explaining extensive user behavior-specific heterogeneity

Smart charging systems can reduce the stress on the power grid from electric vehicles by coordinating the charging process. To meet user requirements, such systems need input on charging demand, i.e., departure time and desired state of charge. Deriving these parameters through predictions based on past mobility patterns allows the inference of realistic values that offer flexibility by charging vehicles until they are actually needed for departure. While previous studies have addressed the task of charging demand predictions, there is a lack of work investigating the heterogeneity of user behavior, which affects prediction performance. In this work we predict the duration and energy of residential charging sessions using a dataset with 59,520 real-world measurements from 267 electric vehicles. While replicating the results put forth in related work, we additionally find substantial differences in prediction performance between individual vehicles. An in-depth analysis shows that vehicles that on average start charging later in the day can be predicted better than others. Furthermore, we demonstrate how knowledge that a vehicles charges over night significantly increases prediction performance, reducing the mean absolute percentage error of plugged-in duration predictions from over 200 % to 15 %. Based on these insights, we propose that residential smart charging systems should focus on predictions of overnight charging to determine charging demand. These sessions are most relevant for smart charging as they offer most flexibility and need for coordinated charging and, as we show, they are also more predictable, increasing user acceptance.
Applied Energy, 370
ISSN:0306-2619
ISSN:1872-9118
- ETH Zurich Switzerland
Demand response, Electric vehicles, Demand prediction, Electric vehicles; Smart charging; Demand response; Demand prediction; Real-world data, Smart charging, Real-world data
Demand response, Electric vehicles, Demand prediction, Electric vehicles; Smart charging; Demand response; Demand prediction; Real-world data, Smart charging, Real-world data
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
