Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY NC ND
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A framework of data assimilation for wind flow fields by physics-informed neural networks

Authors: Chang Yan; Shengfeng Xu; Zhenxu Sun; Thorsten Lutz; Dilong Guo; Guowei Yang;

A framework of data assimilation for wind flow fields by physics-informed neural networks

Abstract

Various types of measurement techniques, such as Light Detection and Ranging (LiDAR) devices, anemometers, and wind vanes, are extensively utilized in wind energy to characterize the inflow. However, these methods typically gather data at limited points within local wind fields, capturing only a fraction of the wind field's characteristics at wind turbine sites, thus hindering detailed wind field analysis. This study introduces a framework using Physics-informed Neural Networks to assimilate diverse sensor data types. This includes line-of-sight wind speed, velocity magnitude and direction, velocity components, and pressure. Moreover, the parameterized Navier-Stokes equations are integrated as physical constraints, ensuring that the neural networks accurately represent atmospheric flow dynamics. The framework accounts for the turbulent nature of atmospheric boundary layer flow by including artificial eddy viscosity in the network outputs, enhancing the model's ability to learn and accurately depict large-scale flow structures. The reconstructed flow field and the effective wind speed are in good agreement with the actual data. Furthermore, a transfer learning strategy is employed for the online deployment of pre-trained PINN, which requires less time than that of the actual physical flow. This capability allows the framework to reconstruct wind flow fields in real time based on live data. In the demo cases, the maximum error between the effective wind speed reconstructed online and the actual value at the wind turbine site is only 3.7%. The proposed data assimilation framework provides a universal tool for reconstructing spatiotemporal wind flow fields using various measurement data. Additionally, it presents a viable approach for the online assimilation of real-time measurements. To facilitate the utilization of wind energy, our framework's source code is openly accessible.

Related Organizations
Keywords

Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, Physics - Fluid Dynamics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average