Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article . 2024
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article . 2024
License: CC BY
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Will hydrogen and synthetic fuels energize our future? Their role in Europe's climate-neutral energy system and power system dynamics

Authors: Béres, Rebeka; Nijs, Wouter; Boldrini, Annika; van den Broek, Machteld;

Will hydrogen and synthetic fuels energize our future? Their role in Europe's climate-neutral energy system and power system dynamics

Abstract

This study evaluates the technoeconomic impacts of direct and indirect electrification on the EU's net-zero emissions target by 2050. By linking the JRC-EU-TIMES long-term energy system model with PLEXOS hourly resolution power system model, this research offers a detailed analysis of the interactions between electricity, hydrogen and synthetic fuel demand, production technologies, and their effects on the power sector. It highlights the importance of high temporal resolution power system analysis to capture the synergistic effects of these components, often overlooked in isolated studies. Results indicate that direct electrification increases significantly and unimpacted by biomass, CCS, and nuclear energy assumptions. However indirect electrification in the form of hydrogen varies significantly, between 1400 and 2200 TWhH2 by 2050. Synthetic fuels are essential for sector coupling, making up 6–12% of total energy consumption by 2050, with the power sector supplying most hydrogen and CO2 for their production. Varying levels of indirect electrification impact electrolysers, renewable energy, and firm capacities. Higher indirect electrification increases electrolyser capacity factors by 8%, leading to more renewable energy curtailment but improves system reliability by reducing 11 TWh unserved energy and increasing flexibility options. These insights inform EU energy policies, stressing the need for a balanced approach to electrification, biomass use, and CCS to achieve a sustainable and reliable net-zero energy system by 2050. We also explore limitations and sensitivities.

Country
Netherlands
Related Organizations
Keywords

Electrification, Model-Linking, Net-neutrality, Sector coupling, The Europen Union, SDG 7 - Affordable and Clean Energy, Hydrogen, Model

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Top 10%
hybrid