Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Realising large areal capacities in liquid metal batteries: A battery design concept for mass transfer enhancement

Authors: Declan Finn Keogh; Mark Baldry; Victoria Timchenko; John Reizes; Chris Menictas;

Realising large areal capacities in liquid metal batteries: A battery design concept for mass transfer enhancement

Abstract

Liquid metal batteries (LMBs) are a promising grid-scale storage device however, the scalability of this technology and its electrochemical performance is limited by mass transport overpotentials. In this work, a numerical model of a three-layer LMB was developed using a multi-region approach. An alternative design concept for the battery aimed at reducing mass transport overpotentials, increasing cell capacity, and improving electrochemical cell performance was implemented and evaluated. The design consisted of a coil implanted in the cathode, which induced mixing in the layer. Four cases were compared: three in a 241 Ah LMB at 0.3, 0.5 and 1 A/cm$^{2}$, and one in a larger 481 Ah LMB at 0.5 A/cm$^{2}$. LMB performance was determined by comparison against baseline diffusion cases and a change in molar fraction of 0.1. The modified LMB exhibited dramatic performance increases with a 78% and 85% reduction in mass-transport overpotentials at 0.3 A/cm$^{2}$ and 0.5 A/cm$^{2}$, respectively. The improved performance of the battery was directly attributed to the flow generated in the cathode. It was found that the coil substantially increased the poloidal volumetric average velocity. Periodically, vortices formed that removed concentration gradients from the cathode-electrolyte interface, minimising concentration polarisation. The viability of the design was tested in a lab-scale prototype using Galinstan as the working fluid. The velocity of the flow was determined using particle image velocimetry (PIV), and the results compared to the numerical model. There was a close match between the experimental and numerical results, validating the numerical model and the viability of the design. Implementation of this design concept in future LMBs could lead to the realisation of extended discharge capacities and improved voltages. Future work is planned to test the coil in a working battery.

Keywords

Physics - Fluid Dynamics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid
Related to Research communities
Energy Research