
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Enhancing grid stability in PV systems: A novel ramp rate control method utilizing PV cooling technology

Iwabuchi K., Watari D., Zhao D., et al. Enhancing grid stability in PV systems: A novel ramp rate control method utilizing PV cooling technology. Applied Energy 378, 124737 (2025); https://doi.org/10.1016/j.apenergy.2024.124737. ; Rapid fluctuations in solar irradiation lead to significant variability in PV power output. Traditional ramp rate control methods use battery energy storage systems to smooth power outputs and provide a more consistent supply to the grid. However, these methods require high initial costs and substantial maintenance. In this study, we propose a novel method for controlling PV power output ramp rates using cooling technology, which is essential to stabilize grid operations and ancillary services. The proposed method adjusts power generation efficiency in real-time by controlling PV panel temperature, leveraging their thermoelectric properties. The effectiveness of our method was validated by simulation based on real-world data, which showed reductions in mean and maximum ramp rates of 43.5% and 76.2%, respectively, compared to traditional battery storage solutions. Notably, these improvements were achieved with a cooling unit having a coefficient of performance of less than 10 and a minimal battery capacity of 20 kWh, highlighting the efficiency of the method and its potential to significantly lower system costs and environmental impacts compared to traditional control strategies.
- Osaka University Japan
- Osaka University Japan
Power ramp rate control, PV systems, Power grids, 600, PV cooling, 620
Power ramp rate control, PV systems, Power grids, 600, PV cooling, 620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
