Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IFE Brage
Article . 2025
Data sources: IFE Brage
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modelling, simulation, and optimisation of agrivoltaic systems: a comprehensive review

Authors: Zainali, Sebastian; Ma Lu, Silvia; Fernandez Solas, Alvaro; Cruz-Escabias, Alejandro; Fernández, Eduardo F.; Khalil Zidane, Tekai Eddine; Hustad Honningdalsnes, Erlend; +7 Authors

Modelling, simulation, and optimisation of agrivoltaic systems: a comprehensive review

Abstract

Agrivoltaic systems combine food production and solar energy conversion on the same land, offering a dual-use approach to address land use concerns in renewable energy development. One of the main research and market challenges for agrivoltaic systems is the ability to predict food and energy yields prior to installation. The photovoltaic modules reduce solar irradiation on the ground, altering the energy balance at the ground and crop levels, affecting thus evapotranspiration and photosynthesis. The photovoltaic modules also influence local rain distribution and wind patterns, creating a microclimate that impacts both crop production and photovoltaic efficiency. The need to evaluate these effects and their impact on crop growth before installation is underscored by the recent implementation of new standards, guidelines, and regulations governing agrivoltaic systems in various regions. This study provides a critical review of existing research with a focus on the modelling, simulation, and optimisation of agrivoltaic systems. It highlights recent advancements in simulating and optimising the design of agrivoltaic systems through integrated simulations of shading, microclimates, electrical performance, and agricultural productivity. This study highlights the critical role of optimised light distribution in enhancing both crop yields and electricity production within agrivoltaic systems. However, the diversity of modelling approaches from the PV and agricultural sectors, coupled with the absence of standardised benchmarks, complicates the selection of appropriate models for specific systems and conditions. Future research should prioritise the development of standardised benchmarks to enable consistent comparisons across models, facilitating a better understanding of trade-offs between computational efficiency, interpretability, and accuracy. Collaborative efforts, publicly available datasets, and benchmarking initiatives are essential for validating models across diverse agrivoltaic configurations and regions.

Modelling, simulation, and optimisation of agrivoltaic systems: a comprehensive review

Countries
Sweden, Germany, Norway, Norway
Keywords

Energiteknik, Policy, Sustainability, Shading, Energy Engineering, Agrivoltaics Modelling Policy Sustainability Microclimate Shading Crop, Microclimate, Crop, Agrivoltaics, Modelling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid