Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Article . 2025
Data sources: VBN
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Trade-off both in the clearing market and ancillary services markets for agriculture park operator: A strategic bilevel multi-objective programming

Authors: Shao, Junyan; Chen, Houhe; Çelik, Özgür; Wei, Baoze; Vasquez, Juan C.; Guerrero, Josep M.;

Trade-off both in the clearing market and ancillary services markets for agriculture park operator: A strategic bilevel multi-objective programming

Abstract

Future agriculture is poised to shift towards smarter, more sustainable production modes. This innovation are performed as the integration of greenhouse with photovoltaic energy storage systems (PESS). Agricultural park operators (APOs) may efficiently leverage solar energy to enhance both crop growth and overall energy management. Thus, APOs transform into prosumers via the deployment and management of PESS. Beyond benefits known to all, this transition presents a trade-off for APOs: 1) Using energy storage to save more solar energy, thereby extending growth time per day for crops utilize stored power. 2) Lease the energy storage to utilities for additional revenue or offset part of the electricity bill. In response to this future practical and meaningful challenge, this paper develops a bi-level optimization model of strategic decision-making and designs energy management for operators. The upper level highlighted maximizing profits of efficient and daily management for agricultural park. The upper level comprises two parts: (i) Maximizing profits in the ancillary services market and (ii) Minimizing the cost of electricity procurement. The bi-level model is reformulated as a mathematical program with equilibrium constraints (MPEC) problem via the Karush-Kuhn-Tucker (KKT) method. Simulations indicate that deploying photovoltaic and battery systems may reduce costs of electricity procurement and crop growth cycles, increase net profit up to 33 %. Additionally, crop prices and ancillary service prices significantly influence strategy options.

Country
Denmark
Keywords

Distributed control, Boosting mode, Bilevel model, Agriculture park microgrid, MPEC model, Energy management system, Market clearing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research