
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimization of heating curves for heat pumps in operation: Outdoor temperature ranges for energy-efficient heating curve shifts

In the light of global sustainability efforts, heat pumps offer environmental benefits, but their complexity and potential misconfigurations often lead to homeowner dissatisfaction due to inaccurate heating and lower-than-expected efficiency. Among the most important and complex settings is the heating curve and yet there are no easy-to-use methods to optimize it after its initial set-up. This study aims to develop ready-to-use guidelines for optimizing the heating curve with energy-efficient adjustments that improve room comfort and prevent suboptimal user changes, all without requiring additional sensors like room thermostats. Based on interpretable linear models, estimated on 3995 air-to-water heat pumps, located in Central Europe, we select the least energy-intensive heating curve shift for each outdoor temperature, needed to meet room thermal comfort. We find that the standard parallel shift of the heating curve is only the optimal approach when the average outdoor temperature is between 2 ⁰C and 5 ⁰C. Outside this range, the heating curve should be moved at its starting or the endpoint. Simulation shows that by translating user input to the room controller with our proposed changes, 84.42 % of the heating curves can be improved, reducing the share of misconfigured heating curves from 24.01 % to 7.08 %. This leads to an average reduction in yearly energy consumption of 4.02 % and an increase in the seasonal coefficient of performance by 2.59 % on average. By introducing ready-to-use heating curve improvement guidelines, we aim to increase efficiency and confidence in heat pump technology, ensuring its adoption to meet carbon emission targets.
Applied Energy, 389
ISSN:0306-2619
ISSN:1872-9118
- ETH Zurich Switzerland
Optimization, Residential buildings, Energy efficiency, Air-to-water heat pump; Heating curve; Optimization; Residential buildings; Energy efficiency; Operational data, Air-to-water heat pump, Operational data, Heating curve
Optimization, Residential buildings, Energy efficiency, Air-to-water heat pump; Heating curve; Optimization; Residential buildings; Energy efficiency; Operational data, Air-to-water heat pump, Operational data, Heating curve
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
