
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Optimal management of coupled hydrogen-electricity energy systems at ports by multi-time scale scheduling
This paper proposes a multi-time scale scheduling strategy for a practical port coupled hydrogen-electricity energy system (CHEES) to optimize the integration of renewable energy and manage the stochasticity of port power demand. An optimization framework based on day-ahead, intra-day and real-time scheduling is designed. The framework allows coordinating adjustable resources with different rates to reduce the impact of forecast errors and system disturbances, thus improving the flexibility and reliability of the system. The effectiveness of the proposed strategy is verified by a case study of the actual CHEES in the Ningbo Zhoushan Port, and the impact of equipment anomalies on the port power system operation is studied through simulation of different scenarios. The results show that compared with a scheduling scheme without energy management strategy, CHEES with multi-time scale scheduling can save 25.42 % of costs and reduce 14.78 % of CO2 emissions. A sensitivity analysis is performed to highlight the impact of hydrogen price and soft open points (SOP) rated power on the system economy. This study not only provides a new perspective for the optimal scheduling of port energy systems, but also provides a practical framework for managing port energy systems to achieve green transformation and sustainable development.
Renewable energy, Port, Multi-time scale scheduling, Hydrogen energy, Coupled hydrogen-electricity energy system
Renewable energy, Port, Multi-time scale scheduling, Hydrogen energy, Coupled hydrogen-electricity energy system
