
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modeling the capacity of a novel flow-energy harvester

Modeling the capacity of a novel flow-energy harvester
Abstract The performance of a new type of flow energy harvester based on oscillating foils is investigated through numerical modeling by using two methods, a 2D thin-plate model and a 3D nonlinear boundary-element model. The fluid–structure interaction problem involved in the dynamics of a heaving/pitching foil coupled with an actuation/energy harvesting system in this device is examined. The 2D analysis allows us to simulate dynamics of the flapping-foil system over a large range of parameters and to identify areas of special interests (e.g., high energy output or high efficiency). In the vicinity of these areas the 3D model can accurately predict the performance of the system. By examining the power extraction capacity and efficiency of the system at various geometric, mechanical, and kinematic parameters, the optimal performance of the system is determined. In addition, the performance is found to be enhanced by the presence of a solid ground, as well as the thickness of the foil (at certain frequencies).
- University of Rostock Germany
- University of California, San Diego United States
- University of Wisconsin–Oshkosh United States
- University of Wisconsin–Oshkosh United States
Modelling and Simulation, Applied Mathematics
Modelling and Simulation, Applied Mathematics
1 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).102 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
