Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Freibu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Mathematical Modelling
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A highly robust gas network simulation approach through an inherently solvable problem formulation for network states far from intended design points

Authors: Sebastian Ganter; Till Martini; Vytis Kopustinskas; Ivars Zalitis; Bogdan Vamanu; Jörg Finger; Aleksandrs Dolgicers; +4 Authors

A highly robust gas network simulation approach through an inherently solvable problem formulation for network states far from intended design points

Abstract

Pipeline networks are an efficient and widespread transportation system for supplying natural gas as well as increasingly green gas to Europe. However, they are exposed to risks arising from environmental factors, accidents, crime and political issues. This work contributes to the assessment of gas transmission networks and enables a targeted improvement of their resilience. Therefore, the objective of this work is to develop a simulation tool that enables gas transmission system operators (TSOs) to identify weak spots, e.g. potential bottle necks, in their pipeline networks. To this end, a steady-state gas network simulation approach is developed that provides fast results for gas supply deficiencies for complete sets of multi-event disruption scenarios, enabling the identification of the most important network elements. This paper describes how to implement a computationally fast, numerically robust, and physically accurate gas network simulation and assessment tool. By solving mass and momentum balance equations, it accounts for key network elements such as flow control valves, pressure control valves, compressor stations, gas sources, and gas consumers. The central feature that distinguishes this approach from classical steady state solvers is the robustness of the gas flow calculation through the choice of a problem boundary condition formulation, which results in an inherently solvable system of equations. This feature is key in ensuring mathematical convergence of predictions for gas network states that strongly deviate from their original design point, where boundary conditions must not become mathematically invalid but need to reflect physically reasonable behavior. The capabilities of the system are demonstrated using a fictitious gas network and a representative national gas transmission network. Finally, the limits of applicability are outlined based on the size of the network under consideration and the types of analyses.

Country
Germany
Keywords

006, 620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
hybrid