
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Numerical and experimental investigation on deterministic prediction of ocean surface wave and wave excitation force

Floating marine structures implement real-time wave excitation force prediction to address optimal control issues. The accuracy of force prediction relies on adequate wave forecasting. This paper presents a comprehensive analysis of deterministic wave forecasting by considering various wave steepnesses and directional spreads. In addition, we introduce new methods for predicting wave excitation forces acting on the floating body of interest. The methods are based on a set of frequency coefficients of wave excitation forces, which are generated in conjunction with wave amplitude parameters optimized in the data assimilation and frequency response functions obtained from boundary element method tools. These approaches offer the advantage of streamlining the calculation process, eliminating the need for simulating wave surfaces through wave propagation. Moreover, for the first time, we study a prediction zone for wave excitation forces by comparing predicted forces with theoretical forces. Lastly, the force prediction is validated against experiments conducted on a captive platform model in both unidirectional and multidirectional sea states.
- Oregon State University United States
- Université de Nantes France
- École Centrale de Nantes France
- University of Nantes France
- French National Centre for Scientific Research France
[SPI]Engineering Sciences [physics]
[SPI]Engineering Sciences [physics]
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
