Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heat and mass transfer during adsorption of ammonia in a cylindrical adsorbent bed: thermal performance study of a combined parabolic solar collector, water heat pipe and adsorber generator assembly

Authors: A. Mimet; A. El Bouardi; F. Badia; J. Bougard; Josep Illa; F. Aghbalou;

Heat and mass transfer during adsorption of ammonia in a cylindrical adsorbent bed: thermal performance study of a combined parabolic solar collector, water heat pipe and adsorber generator assembly

Abstract

Abstract In this paper we present the study of adsorption refrigerator which use an activated carbon-pair ammonia. The ability of activated carbons to adsorb large mass of ammonia makes them ideal for use in adsorption refrigeration and pump systems. These systems have not reasonable efficiency. In order to make these systems economically viable, their size must be reduced. This implies a need for a rapid heating and cooling the adsorbent/refrigerant pair. However, the main problems to be overcome is related to the poor heat transfer in the adsorbent bed. So, it is necessary to study and understand the heat and mass transfer within the bed and to improve it. A detailed model of heat and mass transfer into the generator has been developed. For a given heat flux, temperature and adsorbed mass have been computed in every point at each step time along the adsorbed bed (generator). Experimental installation simulating an adsorption machine working within a temperature ranging from 20 to 250 °C and pressure ranging from 0 to 2.5 × 106 Pa, allows for identification of the generator's equivalent thermal conductivity and internal heat transfer coefficient. These two parameters are then used to simulate thermal performance of a design whose features include the insertion of stainless steel water heat pipe (HP's) condensers into the generator. The HP's evaporator heat input is of solar origin using a compound parabolic collector (CPC). Nominal Solar coefficient of performance, COPs =14.37% obtained through both Adimensional Exergy Loss (AEL), and COP study, shows the competitiveness of the proposed design.

Keywords

Solar energy, Refrigeration, Adsorption

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%