Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Supercritical water oxidation improvements through chemical reactors energy integration

Authors: Vasile Lavric; Jacques De Ruyck; Herman Weyten; Valentin Plesu; Elena Daniela Lavric; Elena Daniela Lavric;

Supercritical water oxidation improvements through chemical reactors energy integration

Abstract

Abstract Supercritical Water Oxidation (SCWO) is the process of complete destruction of toxic and hazardous organic wastes in a compact, totally enclosed system through oxidation in water brought to temperatures and pressures above its critical point: 374 °C and 218 atm. At these conditions, organic materials, gases and water form a new phase, completely mixed, that provides the environment for a rapid and complete oxidation. Typical products from a SCWO process include carbon dioxide, water, and inorganic salts or acids. SCWO advantages include very high destruction efficiencies, low NO x and SO x occurrence, no dioxins or furans, totally contained process, no smokestack, relatively low temperature operation, and compact size. The chemical reactors energy integration (CREI) concept focuses on, simultaneously, the entropy generation reduction of both chemical reactor network (CRN) and heat exchanger networks (HEN) and the search for possibly new operating conditions for some of the reactors (if not all) to accomplish this goal. The basic idea of CREI is to replace each of the reactors of the CRN with a corresponding virtual heat exchanger, having the chemical reaction enthalpy as thermal load, thus creating a virtual HEN. Then, combine this VHEN and the existing HEN into an extended system, which will be the object of the pinch analysis. Care should be taken that the virtual heat exchanger system produces the same amount of entropy as the replaced chemical reactor. Pinch and CREI analysis were applied to SCWO process and the suitable network configuration and operating conditions were found to achieve the minimum entropy generation.

Country
Belgium
Keywords

supercritical water oxidation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Average