
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Analysis of a SOFC energy generation system fuelled with biomass reformate

handle: 2108/52659
Abstract Biomass reformation is an interesting path for hydrogen production and its use for efficient energy generation. The main target is the fully exploitation of the potential of renewable fuels. To this aim, the coupling a biomass reformer together with a high temperature solid oxide fuel cell (SOFC) stack shows some advantages for the similar operating temperature of the two processes and the internal reforming capability of the SOFC. The latter further allows less stringent composition requirements of the feed gas from a gasifier and internal cooling of the SOFC. In this work, a complete model of a SOFC coupled with a biomass gasifier is used to identify the main effects of the operating conditions on the fuel cell performance. The gasification process has been simulated by an equilibrium model able to compute the reformate composition under different operating conditions, whereas a 3D fluid dynamics simulation (FLUENT) coupled with an external model for the electrochemical reactions has been used to predict the fuel cell performance in terms of electrical response and mass-energy fluxes. A 14 kW integrated SOFC-gasifier system has been analysed with this model to address the response of a planar SOFC as a function of the gasifier operating conditions.
Thermal integration, Fuel cell modelling, 670, Settore ING-IND/08 - MACCHINE A FLUIDO, Solid oxide fuel cells; Fuel cell modelling; Biomass gasification; Thermal integration, Biomass gasification, Solid oxide fuel cell
Thermal integration, Fuel cell modelling, 670, Settore ING-IND/08 - MACCHINE A FLUIDO, Solid oxide fuel cells; Fuel cell modelling; Biomass gasification; Thermal integration, Biomass gasification, Solid oxide fuel cell
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).72 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
