
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermal conductivity enhancement of carbon fiber composites

The effective thermal conductivity enhancement of carbon fiber composites is investigated in this contribution using a three-dimensional numerical method. First a more realistic three-dimensional distribution of fibers dispersed in a matrix phase is reproduced by a developed random generation-growth method to eliminate the overrated inter-fiber contacts by the two-dimensional simulations. The energy transport governing equations are then solved through the three-dimensional structures using a high-efficiency lattice Boltzmann scheme. The resultant predictions agree well with the available experimental data. Compared with the existing theoretical models, the present method does not depend upon empirical parameters which have to be determined case by case, so that it is useful for design and optimization for new materials, beyond prediction and analysis just for existing composites.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).182 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
