
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Numerical simulation of the flow streams behavior in a self-regenerative crucible furnace

Abstract This paper presents a three dimensional numerical simulation with experimental validation of a gas-fired self-regenerative crucible furnace. Turbulence, radiation and chemical reactions are simulated using the software Gambit V2 and Fluent V6.2. Different combustion models are used to assess their effects on the numerical results. Aerodynamics, temperature fields, species profiles and emissions are compared with the experimental data. The results indicate that k–e RNG model predicts the formation of two concentric swirls: the first one elevating up to the top of the furnace and the second one going down and reaching the outlet. In addition, it was found that is important to inject the fuel using certain vertical inclination of the nozzle in order to obtain a longer and flater flame. Finally, the use of PDF mixture fraction model for combustion causes overprediction of both temperature and CO, while Finite Rate/Eddy Dissipation model is rougher for temperature and species prediction.
- University of Antioquia Colombia
- University of Antioquia Colombia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
