
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Composites “binary salts in porous matrix” for adsorption heat transformation

A family of Composites “Salt inside Porous Matrix” (CSPM) has been considered as promising for adsorption heat transformation (AHT) due to their high sorption capacity, steep sorption isobars and opportunity to harmonize CSPM properties with boundary conditions of the AHT cycle. In this communication, we extend the harmonizing tools by confinement of one more salt to the matrix pores. Novel CSPMs based on a binary mixture of lithium, calcium, and barium halides inside various mesoporous matrices were synthesized with wide variation of the relative salts content. Their phase composition and sorption equilibrium with water, methanol and ammonia vapour were studied by XRD and TG techniques. It was shown that the formation of a homogeneous solid solution of the salts led to changing the equilibrium temperature (pressure) of the solvation. Thus, the confinement of binary salt systems to the matrix pores can be an effective tool for designing innovative materials with predetermined sorption properties adapted to particular AHT cycles.
- Boreskov Institute of Catalysis Russian Federation
- Novosibirsk State University Russian Federation
- Novosibirsk State University Russian Federation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).55 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
