Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Composites “binary salts in porous matrix” for adsorption heat transformation

Authors: Tamara Krieger; Alexandra D. Grekova; Larisa G. Gordeeva; Yuri I. Aristov;

Composites “binary salts in porous matrix” for adsorption heat transformation

Abstract

A family of Composites “Salt inside Porous Matrix” (CSPM) has been considered as promising for adsorption heat transformation (AHT) due to their high sorption capacity, steep sorption isobars and opportunity to harmonize CSPM properties with boundary conditions of the AHT cycle. In this communication, we extend the harmonizing tools by confinement of one more salt to the matrix pores. Novel CSPMs based on a binary mixture of lithium, calcium, and barium halides inside various mesoporous matrices were synthesized with wide variation of the relative salts content. Their phase composition and sorption equilibrium with water, methanol and ammonia vapour were studied by XRD and TG techniques. It was shown that the formation of a homogeneous solid solution of the salts led to changing the equilibrium temperature (pressure) of the solvation. Thus, the confinement of binary salt systems to the matrix pores can be an effective tool for designing innovative materials with predetermined sorption properties adapted to particular AHT cycles.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%