

Found an issue? Give us feedback
Applied Thermal Engineering
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
On the role of working fluid properties in Organic Rankine Cycle performance

MESTD| Predefined functional properties polymer composite materials processes and equipment development
Authors: Stijepović, Mirko Z.; Linke, Patrick; Papadopoulos, Athanasios I.; Grujić, Aleksandar;
Abstract
Abstract The performance of ORC systems strongly depends on working fluid properties. We explore the relationships between working fluid properties and ORC common economic and thermodynamic performance criteria from a theoretical and an analytical point of view. The mapping of individual properties and performance criteria presented in this paper will provide a basis for the development of efficient and systematic strategies and approaches for ORC working fluid selection in future.
Country
Serbia
Related Organizations
Keywords
Performance assessment, Organic Rankine Cycle, Working fluid selection, Economic analysis, Thermodynamic analysis
Performance assessment, Organic Rankine Cycle, Working fluid selection, Economic analysis, Thermodynamic analysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).130 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1% visibility views 72 download downloads 3 - 72views3downloads

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
influence
Influence provided by BIP!
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
impulse
Impulse provided by BIP!
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
views
Views provided by UsageCounts

downloads
Downloads provided by UsageCounts

130
Top 1%
Top 1%
Top 1%
72
3
Fields of Science (3) View all
Related to Research communities
Energy Research