Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Waste-to-energy facility planning under uncertain circumstances

Authors: Radovan Šomplák; T. Ferdan; Martin Pavlas; Pavel Popela;

Waste-to-energy facility planning under uncertain circumstances

Abstract

Abstract The paper deals with the development and presentation of the use of an advanced computational optimization tool for the conceptual planning of facilities in the field of waste-to-energy. The determination of the suitable capacity and sizing of an appropriate heat recovery system, according to adopted heat utilization strategy (i.e. either only electricity production or combined heat and power if feasible), represent crucial decisions about each individual incineration plant in its early project stage. The economic feasibility of the project should be guaranteed at the same time. The feasibility is measured by internal rate of return. An optimization model supporting such decisions was built and is introduced. Building a new incinerator, from the initial considerations to its full operation, is a long-term process with duration at a minimum of 5–7 years. The erection is then followed by an operational phase exceeding 20 years. The unclear future development of important parameters affecting the project sustainability is reflected by implementing principal concepts of stochastic programming. In the article, a brief overview of principal ideas related to decision making under uncertainty (wait-and-see and/or here-and-now approaches, specification, and use of scenarios) is given first, followed by the description of a mathematical model. Then, the selected approach is demonstrated through a case study involving a municipal solid waste incinerator.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%