
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A combustor liner cooling system design methodology based on a fluid/structure approach

handle: 11588/570857
Abstract The paper presents a multi-disciplinary multi-objective design optimization methodology of a combustion chamber effusion cooling system. The optimizer drives an Artificial Neural Network and a Manufacturing Time Model in a repeated analysis scheme in order to increase the combustor liner LCF life and to reduce the liner cooling system manufacturing time, simultaneously. The ANN is trained with a set of fluid/structure/lifing simulations arranged in a three-levels dataset based on a properly designed DOE approach. The CFD simulations are carried out with a reliable and robust in-house developed three-dimensional high resolution reactive viscous flow solver, accounting for conjugate heat transfer approach; the liner structural analysis is performed with a standard FEM code while the liner life assessments are obtained through an in-house developed software operating on the temperature/stress fields. Results demonstrate the validity of the overall approach in a five-dimensional state space with truly moderate computational costs.
- ARCO United States
- University Federico II of Naples Italy
- ARCO United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
