
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Steady-state modeling and analysis of a loop heat pipe under gravity-assisted operation

Loop heat pipes (LHPs) are efficient two-phase heat transfer devices that have found many space and terrestrial applications. This work addresses our insufficient understanding of LHP operation under gravity-assisted attitude, i.e. the condenser is located higher than the evaporator. A steady-state mathematical model of a LHP under gravity-assisted operation was established based on two driving modes: gravity driven mode and capillarity-gravity co-driven mode, determined by a defined transition heat load. The model was validated by the experimental results, and was employed to predict the operating characteristics of a LHP under the gravity-assisted attitude. Comparing to LHPs operating under horizontal or antigravity attitudes, some distinctive features have been identified, which include: i) the total mass flowrate in the loop shows a unique V-shape with the increase of applied heat load; ii) the steady-state operating temperature is much lower under the gravity driven mode, and is in similar values under capillarity-gravity co-driven mode and iii) the thermal conductance of the LHP increases with increasing positive elevation especially in the variable conductance zone. Such results contribute greatly to the understanding of the complicated operating principle and characteristics of LHPs especially for terrestrial applications.
- Beihua University China (People's Republic of)
- University of Leeds United Kingdom
- Beihang University China (People's Republic of)
- White Rose Consortium: University of Leeds; University of Sheffield; University of York United Kingdom
- White Rose Consortium: University of Leeds; University of Sheffield; University of York United Kingdom
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
