
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Prediction of SCP and COP for adsorption heat pumps and chillers by combining the large-temperature-jump method and dynamic modeling

handle: 20.500.14243/317065
Adsorption heat pumps and chillers provide sustainable heating and cooling by transforming waste or solar heat. To increase the efficiency of adsorption heat pumps and chillers, new adsorber designs are constantly proposed. However, evaluating the efficiency of new adsorber designs is a time- and money consuming task. To reduce time and costs, we combine two methods in this work: First, the kinetic performance is evaluated experimentally using the Large Temperature Jump method for a representative adsorber part. Second, a dynamic model for the adsorber is developed and validated. The validated adsorber model is used in a dynamic model of a complete adsorption heat pump cycle. Our approach allows for a sound analysis of novel adsorber designs by determination of the efficiency indicators specific cooling power (SCP) and coefficient of performance (COP) based on a representative adsorber part. We studied a representative adsorber part made from an extruded aluminum tube heat exchanger filled with silica gel 123. We determined SCP and COP as function of adsorption and desorption times and found a maximum SCP 268 W kg(-1) with a corresponding COP of 0.51 for a desorption time of 125 s and an adsorption time of 200 s. (C) 2015 Elsevier Ltd. All rights reserved.
Modelica, Adsorption kinetics, Silica gel 123-water, Adsorption dynamics, Adsorption model
Modelica, Adsorption kinetics, Silica gel 123-water, Adsorption dynamics, Adsorption model
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).57 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
