
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effects of vacuuming process parameters on the thermal performance of composite heat pipes

Abstract Cylindrical heat pipes with sintered-grooved composite wicks are manufactured by more than 20 processes. Essential to their thermal performances are the working fluid filling and vacuuming processes. In this work, the effects of various process parameters on the thermal performance of a composite heat pipe were examined experimentally by conducting transient and steady-state tests. Under the conditions of the first vacuuming process, the effective working length showed a more remarkable effect on the start-up performance of the heat pipes than the first vacuuming time and filling ratio. The isothermal performance demonstrated sensitivity to the filling ratio. Under the conditions of the second vacuuming process, the second vacuuming temperature showed a remarkable effect on the isothermal performance. The thermal resistances were less than 0.02 K/W at the evaporator and less than 0.09 K/W at the condenser with respect to those less than 0.16 K/W after the first vacuuming process.
- South China University of Technology China (People's Republic of)
- Nottingham Trent University United Kingdom
- University of Bristol United Kingdom
- South China University of Technology China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).42 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
