
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Investigations on unsteady flow within a stationary passage of a pressure wave exchanger, by means of PIV measurements and CFD calculations

Investigations on unsteady flow within a stationary passage of a pressure wave exchanger, by means of PIV measurements and CFD calculations
Abstract This paper presents results of investigations focused on a pressure wave exchanger demonstrator, constructed at the Aerodynamics Division at Warsaw University of Technology. Main flow features of the device were analyzed and experimental data was collected in order to perform validation of CFD calculations. Three different turbulence models (Standard-k-ω, SST-k-ω and SST-SAS) were used in simulations and tested in unsteady conditions. Data in form of: velocity field, shape and position of the contact surface between the driving and the driven medium served to perform comparison between PIV measurements and numerical calculations, which revealed that the best correlation between experiments and numerical data was obtained with SST-SAS turbulence model.
8 Research products, page 1 of 1
- 2016IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
