Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Direct dry cooling system through hybrid ventilation for improving cooling efficiency in power plants

Authors: Xiaoze Du; Yanqiang Kong; Yongping Yang; Lijun Yang; Weijia Wang; Xianwei Huang;

Direct dry cooling system through hybrid ventilation for improving cooling efficiency in power plants

Abstract

Abstract The thermo-flow performances of conventional air-cooled condenser (ACC) using mechanical ventilation are basically susceptible to ambient winds due to its geometrical flaws, so more attentions have been paid to weakening such unfavorable effects, but the hybrid ventilation has never been considered. Based on representative 2 × 600 MW power generating units, two types of hybrid ventilation direct dry cooling systems (HVDDCS) utilizing the buoyancy force from the cooling tower, circular-type and rectangular-type, are developed. Furthermore, the thermo-flow performances in three wind directions of 0°, 45° and 90° are presented and compared with the conventional ACCs. The results show that the hot plume recirculation of the peripheral condenser cells for HVDDCS can be avoided, thus the inlet air temperature of air-cooled condensers is reduced. For circular HVDDCS, the reversed flows in upwind condenser cells are much weakened, leading to increased heat rejection and improved cooling performance in any case. In the wind direction of 0°, the rectangular HVDDCS shows a superior performance to those in the wind directions of 45° and 90°, so it is applicable to the region with a prevailing wind direction. The HVDDCS could be recommended for the potential engineering application thanks to its more energy efficient performance.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Top 10%