Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Off-design performance analysis of cryogenic turbo-expander based on mathematic prediction and experiment research

Authors: Shuangtao Chen; Xiaojiang Li; Yu Hou; Yang Meng; Qiang Zeng; Fang Lou; Lu Niu;

Off-design performance analysis of cryogenic turbo-expander based on mathematic prediction and experiment research

Abstract

Abstract Cryogenic turbo-expander is most significant equipment to provide cooling energy in system and its working condition is always deviated from design point. A mathematic prediction method study is carried out to estimate turbo-expander off-design performance. Computational iterative loop is compiled by Matlab, dimensionless mass flow rate equation of mean streamline and novel loss correlation are applied to quantitatively describe the flow expansion through turbine ducts. Cryogenic turbo-expander performance is evaluated by total-to-static efficiency. According to velocity ratio, the effect of pressure ratio, inlet temperature, rotational speed variation to turbine performance is analyzed, and the predicted performance map is plotted. Meanwhile, an experimental study is conducted under off-design condition. Temperature, pressure, rotation speed and volume flow rate are collected, total-to-static efficiency are calculated from turbine inlet and outlet states over pressure ratio range of 2.4–3.4, and the tested rotation speed range is set from 52,000 to 60,000 rpm. Turbine efficiency in different pressure ratio range are categorized and plotted with velocity ratio to validate against computational predicted characteristic. With experimental comparison, this off-design performance mathematic code can predict turbine real operation well.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%
bronze