Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Novel intermittent absorption cooling system based on membrane separation process

Authors: Wilfrido Rivera; U. Dehesa-Carrasco; Rosenberg J. Romero; J. Ibarra-Bahena; M. Montiel-González;

Novel intermittent absorption cooling system based on membrane separation process

Abstract

Abstract The present work analyses an intermittent absorption cooling system using a hydrophobic porous membrane unit as desorber/condenser and powered by thermal solar energy. Experimental test runs were carried out in a membrane unit to experimentally determine the amount of refrigerant produced at different operating temperatures. With the obtained information, an intermittent absorption cooling system was modelled at a larger scale using information from real solar collectors and considering a 1 m2 membrane area. According to the experimental performance of the desorber/condenser unit, after 4 h of operation, the total amount of refrigerant produced was 14.50, 11.59 and 7.20 kg for desorber temperatures of 95.1, 85.2 and 75.1 °C, respectively. The designed solar system was composed of a 0.3 m3 storage thermal tank, and 30.2, 25.6 and 20.9 m2 of solar collector area for each desorber thermal level. According to the simulation of the absorption cooling system, evaporator temperatures of 18 and 14 °C were achieved for desorber temperatures of 75.1 and 85.2 °C, while evaporator temperatures of 17 and 12 °C were obtained at 95.1 °C. The COPs were 0.15, 0.21 and 0.26, which increased according to the increase in the desorber temperatures. Based on the clear desorber/condenser tendencies obtained from the refrigerant production, additional absorption conditions were calculated and may be useful for future designs. The lowest evaporator temperature was 6 °C when the initial LiBr concentration was 54.83% w/w, instead of 50.30% w/w at a temperature of 95.1 °C; however, the COP decreased 33%.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
bronze