Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Knowledge-inspired operational reliability for optimal LNG production at the offshore site

Authors: Wahid Ali; Muhammad Abdul Qyyum; Mohd Shariq Khan; Pham Luu Trung Duong; Moonyong Lee;

Knowledge-inspired operational reliability for optimal LNG production at the offshore site

Abstract

Abstract To develop a safe and profitable process, uncertainty quantification is necessary for a reliability, availability, and maintainability (RAM) analysis. The uncertainties of 3% in each key decision variables are propagated which could bring the system into an unreliable/risk region. Hence, in this study, uncertainty quantification (UQ) with simultaneous determination of sensitivity indices (SI) is proposed using generalized polynomial chaos (gPC) modeling approach. This approach reduces about 90% of the total computational time when compared with the conventional simulation approaches required for a complex first principle based model. Subsequently, a knowledge inspired reliability analysis is carried out using the uncertainty analysis (UA). By using the statistical properties of the process, for example, mean/optimal value at 50% failure give the bound between [0.7174, 0.9496] for LNG product stream. Further, it was found that LNG with 10% end flash gas (or 90% liquefaction rate) can be obtained with a failure probability of 14.43%. This value of reliability is promising for a given specified deviation; hence, the process could be assumed to be near to its reliable optimal operational region.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%