Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interaction effect of room opening and air inlet on solar chimney performance

Authors: Long Shi; Xudong Cheng; Lihai Zhang; Zhi Li; Guomin Zhang; Dongmei Huang; Jiyuan Tu;

Interaction effect of room opening and air inlet on solar chimney performance

Abstract

Abstract Solar chimney has been frequently adopted in buildings to save energy by enhancing the natural ventilation. Although its optimization studies have been frequently taken previously, most of them have focused on the configuration of solar chimney but ignored the air inlet, even though its significant influence has already been confirmed. The interaction between the air inlet and room openings (e.g. window and door) is critical to improving the solar chimney performance, but the related interaction mechanism is still not known. Interaction of room opening and air inlet on solar chimney performance was analysed under both natural ventilation and smoke exhaustion modes. Numerical results of 19 scenarios were first validated by reduced-scale experiment tests. Another 25 numerical scenarios for full-scale solar chimney room with different heights of air inlet (0.1–2.3 m) and window (0.6–1.8 m) were analysed. It was known from numerical results that the height of window shows limited influence on flow rate under natural ventilation mode but the obvious effect on both flow rate at the air inlet and the total flow rate (both window and air inlet) under smoke exhaustion mode, especially when the window centre is higher than wall centre. Scenario, when both the window and air inlet are at the vertical centre of the wall, shows the best performance of both natural ventilation and smoke exhaustion. An empirical model was also developed to predict the flow rate through the air inlet under smoke exhaustion. Critical conditions for air inlet to exhaust smoke were determined which happens when the neutral plane is almost no lower than the window centre.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%