
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Adsorption thermodynamics and performance indicators of selective adsorbent/refrigerant pairs

Abstract Adsorbed phase thermodynamics and isosteric heat of adsorption of adsorbent/refrigerant pairs have immense importance in predicting the system performance of an adsorption heat pump. In this study, six potential adsorbent/adsorbate pairs - Maxsorb III/ethanol, PR_KOH4/ethanol, SAC2/R32, Maxsorb III/R152a, H2-treated Maxsorb III/ethanol, and Maxsorb III/propane are compared using a well-established model for determining heat of adsorption. Temperature-entropy (T-s) maps as a function of pressure, temperature, and adsorption uptake were plotted. It was observed that at a fixed temperature (303 K) the adsorbed phase entropy had an increasing trend with the increment of adsorbate uptake for all the studied pairs. Adsorption cooling cycles were plotted in the temperature-entropy maps for a specific cooling condition. Moreover, the entropy flow for different pairs suggested the minimum required driving force. The theoretical coefficient of performance and specific cooling effect were computed for all the pairs. This comparative analysis is important for choosing the suitable adsorbent/adsorbate pair for a particular heat pump application.
- University of Dhaka Bangladesh
- University of Dhaka Bangladesh
- Bangabandhu Sheikh Mujibur Rahman Science and Technology University Bangladesh
- Kyushu University Japan
- Kyushu University Japan
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
