Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prediction of the sealing flow effect on the temperature drop characteristics of a pre-swirl system in an aero-engine

Authors: Aqiang Lin; Xinxin Wang; Gaowen Liu; Wenbin Gong;

Prediction of the sealing flow effect on the temperature drop characteristics of a pre-swirl system in an aero-engine

Abstract

Abstract The sealing flow will inevitably affect the cooling airflow quality in a second air system of an aero-engine. In this study, theoretical derivation and numerical simulation were conducted to establish a modified mixing model that considers both the torque and the source of the mixing flow. Then, the effect of the sealing flow can be evaluated using the modified mixing model. The results demonstrate that the effects of the sealing outflow on the flow and temperature characteristics of the pre-swirl system are weak when the air supply mass flow rate and pressure are fixed. However, the effects of the sealing inflow are significant. When the inner sealing inflow mass flow rate is increased from 0 to 20%, the temperature drop effectiveness is decreased by 31.3%. The temperature drop effectiveness is decreased by 29.2% as the inner sealing inflow temperature rises by 37 K. Then, the temperature drop effectiveness is increased by 15.6% as the inner sealing inflow swirl ratio is increased from 0 to 0.8. The results of the modified mixing model are in satisfactory agreement with the numerical results, which show a maximum temperature drop deviation of 7.22%. Compared with the previous method, the prediction accuracy of the pre-swirl cavity temperature drop can be increased by 22.28%.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%