Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Thermal Engi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Thermal Engineering
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2022
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2022
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://dx.doi.org/10.1016/j.ap...
Article
License: Elsevier TDM
Data sources: Sygma
SSRN Electronic Journal
Article . 2022 . Peer-reviewed
Data sources: Crossref
System
Article . 2022 . Peer-reviewed
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

One-dimensional mathematical modeling of two-phase ejectors: Extension to mixtures and mapping of the local exergy destruction

Authors: Wilhelmsen, Øivind; Aasen, Ailo; Banasiak, Krzysztof; Herlyng, Halvor; Hafner, Armin;

One-dimensional mathematical modeling of two-phase ejectors: Extension to mixtures and mapping of the local exergy destruction

Abstract

The ejector is a process equipment frequently used in refrigeration processes. There is currently a knowledge gap on the efficiency of ejectors operating with mixtures. To address this knowledge gap, we present a one-dimensional ejector model for mixtures, defined by spatially distributed mass-, energy- and momentumbalances for different zones, which together constitute the full ejector geometry. The recently developed delayed homogeneous relaxation model is used to describe the two-phase transition in the motive and suction nozzles. For evaporation of pure CO2 in the throat of the motive nozzle, the model yields an average error of 2.6% in the critical mass flow rate, which is significantly lower than the homogeneous equilibrium model that has an average error of 8.4%. A comparison to new experimental data shows that both models give excellent predictions of critical mass flow rates where condensation occurs in the throat, with an average error below 0.9%. New experimental data with CO2 are presented, which are used to regress two parameters in correlations that describe the momentum transfer between the primary and secondary stream in the mixer and diffuser sections. This leads to accurate reproduction of the pressure lift in five different ejector geometries, with a mean error of 2.3%. By using nonequilibrium thermodynamics, we derive formulae for the local exergy destruction in the ejector. The largest exergy destruction is located in the mixer, and originates in transfer of momentum between the primary and secondary streams. The local exergy destruction profiles through the mixer and diffuser are highly non-uniform, and deviate from the established guidelines for energy-efficient design characterized by equipartition of exergy destruction. This reveals a potential to increase the performance of ejectors by suitable adjustments to their geometric design. The mathematical model validated for pure CO2 is assumed to also be valid for mixtures rich in CO2. We show that minute concentrations of a second component can have a significant influence on the ejector performance. When fixing the inlet conditions and ejector geometry, we demonstrate that adding 2% H2 to a mixture of CO2 decreases the critical mass flow rate by 20%, while adding 2% SO2 increases the pressure lift by 1 bar.

Related Organizations
Keywords

Ejector; Two-phase; Model; Experiments; Mixtures; Exergy destruction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%