
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effect of nanoparticle shape on unsteady liquid film flow of MHD Oldroyd-B ferrofluid

A computational framework is carried out to investigate the drive, and thermal transport of the thin-film flow of unstable magnetohydrodynamic (MHD) Oldroyd-B ferrofluid suspend with cobalt ferrite (CoFe2O4) nanoparticles in water. The governing PDEs of the flow are transmuted as ODEs by applicable similarity conversions and resolved using R-K and Newton’s approaches. We examined the variations in the drive and energy field designations along with the local Nusselt number influenced by the relevant non-dimensional parameters. The results are explored for different nanoparticle shapes (spherical, cylindrical, and laminar) and originate that the energy transport efficiency is advanced in spherical shaped ferrous particles when compared to tube and laminar shaped particles. The Deborah number and unsteadiness parameter has the power to regulate the Nusselt number.
- An Giang University Viet Nam
- Salman bin Abdulaziz University Saudi Arabia
- Central University of Karnataka India
- Duy Tan University Viet Nam
- Central University of Karnataka India
Shape of nanoparticles, MHD, Ferrofluid, Film flow, TA1-2040, Engineering (General). Civil engineering (General), Oldroyd-B fluid
Shape of nanoparticles, MHD, Ferrofluid, Film flow, TA1-2040, Engineering (General). Civil engineering (General), Oldroyd-B fluid
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).43 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
