Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ain Shams Engineerin...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ain Shams Engineering Journal
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ain Shams Engineering Journal
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhancing solar radiation prediction accuracy: A hybrid machine learning approach integrating response surface method and support vector regression

Authors: Rana Muhammad Adnan; Behrooz Keshtegar; Mona Abusurrah; Ozgur Kisi; Abdulaziz S. Alkabaa;

Enhancing solar radiation prediction accuracy: A hybrid machine learning approach integrating response surface method and support vector regression

Abstract

An accurate solar radiation (SR) prediction with a practical training approach is vital in estimating solar energy. A hybrid machine learning (ML) model is proposed for estimating the monthly SR. The proposed model includes two ML approaches: the response surface method (RSM) and support vector regression (SVR). The RSM is used to optimize the input variables and handle the data points for the prediction of SR. The first ML approach presents two input variables to estimate data handling. In the second ML process, the SVR model provides a nonlinear regression for handling data supplied by RSM. A new model was employed to predict the SR data taken from two stations in Turkey, as the temperature and extraterrestrial radiation were used as the model inputs. The RSM, artificial neural networks (ANNs), SVR, multivariate adaptive regression spline (MARS), M5 model tree (M5Tree) and convolutional neural networks (CNN) methods as existing ML approaches were employed to compare the predictions proposed hybrid ML approaches using several criteria. Data were split into training and testing sets, and two scenarios were established to compare models’ efficiencies according to different sets. The outcomes showed that the proposed model provides better accuracy for estimating SR using limited input data than other alternatives. The accuracy of the ANNs, SVR, MARS, M5Tree, RSM and CNN models was improved using a hybrid ML model. The proposed RSM-SVR method enhanced the efficiency of the ANN, SVR, MARS, M5Tree, and RSM methods by RMSE margins ranging from 0.1% to 5.6%, 2.8% to 7.3%, 1.0% to 8.3%, 0.1% to 28%, and 2.0% to 5.9%, respectively.

Keywords

Support vector regression, Solar radiation, Hybrid machine learning model, TA1-2040, Engineering (General). Civil engineering (General), Response surface method

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold